PhD on Modeling of magnetically actuated microstructures in soft materials

PhD on Modeling of magnetically actuated microstructures in soft materials

Published Deadline Location
21 Dec 13 Mar Eindhoven

You cannot apply for this job anymore (deadline was 13 Mar 2022).

Browse the current job offers or choose an item in the top navigation above.

The EindhovenUniversity of Technology (TU/e), Department of Mechanical Engineering has a vacancy for a PhD Student -Modeling of magnetically actuated microstructures in soft materials - in the Polymer Technology group.

Job description

We are looking for a PhD student for a four-year research project on the topic of numerical modeling of magnetically actuated microstructures as in-situ sensors for characterizing local (bio)mechanical properties of soft (biological) materials. In this project you will develop a computational framework, using the finite element method, to characterize and predict complex material parameters from the time-dependent deformation of magnetic microstructures with external actuation, based on experimental data.

Job description
Local rheological properties are important in many biomechanical processes, such as extracellular matrix (ECM) remodeling during cancer metastasis, where the material is heterogeneous at the micrometer scale. However, measurements at this scale are not possible with traditional rheometers since these measure an integrated response of an entire millimeter scale sample. In this project, we will develop a numerical framework for using magnetic microstructures as local rheometers for soft materials. The microstructures are, for example, spherical or rod-shaped particles, or artificial cilia that are actuated with an external magnetic field to locally 'probe' the (bio)material. The first step is the development of an accurate physical model of the magnetic forces that act on the magnetic microstructure, coupled to the hydrodynamic problem, assuming non-Newtonian material behavior. State of the art FEM modeling will be used to generate high-fidelity data for a given magnetic actuation field and constitutive properties of the material to be probed. Model validation will be done using experiments on well-characterized model materials, e.g., hydrogels. The high-fidelity data will subsequently be used in a reduced order model, which is capable of quickly predicting the response of the magnetic microstructures as a function of the applied magnetic field. The reduced order model will then be used in an inverse problem, where we will obtain local rheological information about the material, given observations of the motion of the magnetic microstructures, and create a real-time, in-situ, 3D mapping of the rheological properties of the material. Finally, we will use the developed methodology to analyze experiments on challenging biomaterials such as mucus and extracellular matrix materials. The PhD position is in the Polymer Technology group, in collaboration with the Microsystems group.

Specifications

Eindhoven University of Technology (TU/e)

Requirements

We are looking for an experienced candidate with an MSc degree (or about to obtain one soon) in mechanical engineering, applied physics, applied mathematics or similar. The candidate should have knowledge of continuum mechanics and numerical methods (such as the finite element method) combined with strong programming and mathematical skills and a good physical intuition. Experience with rheology or constitutive modelling are a plus. The ideal candidate
has excellent scientific skills as well as excellent soft skills related to verbal and written communication (in English).

Conditions of employment

  • We offer a challenging job for four years in a highly motivated team at a dynamic and ambitious University. You will be part of a highly profiled multidisciplinary collaboration where expertise of a variety of disciplines comes together. The TU/e is located in one of the smartest regions of the world and part of the European technology hotspot 'Brainport Eindhoven'; well-known because of many high-tech industries and start-ups.
    A place to be for talented scientists!
  • A full-time employment for four years, with an intermediate evaluation (go/no-go) after nine months.
  • To develop your teaching skills, you will spend 10% of your employment on teaching tasks.
  • To support you during your PhD and to prepare you for the rest of your career, you will make a Training and Supervision plan and you will have free access to a personal development program for PhD students (PROOF program).
  • A gross monthly salary and benefits (such as a pension scheme, pregnancy and maternity leave, partially paid parental leave) in accordance with the Collective Labor Agreement for Dutch Universities.
  • Additionally, an annual holiday allowance of 8% of the yearly salary, plus a year-end allowance of 8.3% of the annual salary.
  • Should you come from abroad and comply with certain conditions, you can make use of the so-called '30% facility', which permits you not to pay tax on 30% of your salary.
  • A broad package of fringe benefits, including an excellent technical infrastructure, moving expenses, and savings schemes.
  • Family-friendly initiatives are in place, such as an international spouse program, and excellent on-campus children day care and sports facilities.

Specifications

  • PhD
  • Engineering
  • max. 38 hours per week
  • University graduate
  • V35.5410

Employer

Eindhoven University of Technology (TU/e)

Learn more about this employer

Location

De Rondom 70, 5612 AP, Eindhoven

View on Google Maps

Interessant voor jou