You cannot apply for this job anymore (deadline was 15 Sep 2022).
Browse the current job offers or choose an item in the top navigation above.
Are you looking for a high impact PhD position in close collaboration with industry?
Job description
The European Doctoral Network 'ANTERRA' offers 15 fully funded industrial PhD student positions in the area of antennas, integrated circuits and signal processing, starting in the autumn of 2022. ANTERRA is focussed on Antenna Systems for 6G Non-Terrestrial Networks. The consortium consists of 14 leading European R&D laboratories from universities, industries, and technology institutes in the domain of satellite communication and wireless infrastructure which are located in The Netherlands, France, Sweden, Italy and Belgium.
Research
Our society is on the brink of a new age with the development of new visionary concepts such as internet of things, smart cities, autonomous driving, smart mobility, and coverage everywhere. This stimulates the use of new deployment concepts, such as extreme densification or Non-Terrestrial Networks (NTN), to support the wireless communication evolution. For 6G, a key use case which stands unaddressed by prior telecommunication generations, is that of coverage everywhere. One of the major reasons for not addressing this use case thus far is the lack of expertise about non-terrestrial communication in the classical (terrestrial) telecommunication industry. The European research project ANTERRA addresses this issue by training 15 PhD students on antenna systems for NTN, one of the key aspects to successfully implement coverage everywhere.
In ANTERRA, the research fellows will investigate particular aspects of the system concept. For this, they will take a system view by investigating architectural needs and constraints from which they will develop novel multi-functional high-gain antenna architectures that exhibit a large coverage. Moreover, innovations in energy efficient highly integrated radio front-ends is a key enabler towards more efficient, high performance radio-access hardware for satellite nodes. Research in novel synchronization and beam-finding techniques will lead to stable integration of all network nodes into one global 6G NTN. All concepts will be optimized to meet the requirements of NTN antenna systems.
This vacancy concerns the PhD position on Beam prediction for fast moving LEO. Both downlink and uplink beamforming will be necessary to overcome channel path loss. In the downlink, handovers between beams will occur frequently, while in the uplink the beams (which are narrow due to the link budget from power-limited ground terminals) must track the fast satellite accurately. We will utilize that satellite orbits are highly predictable, and design beam prediction algorithms to overcome the high speeds and rapid beam changes. The project aims at developing a novel beam prediction algorithm for non-terrestrial 6G communication.
Training programme
ANTERRA will provide the PhD students with a comprehensive set of theoretical and practical skills relevant for innovation and long-term employability in a rapidly growing sector. This highly innovative training will cover several inter-disciplinary areas as shown in the figure below. Each PhD student will be enrolled in a doctoral programme and will have two official employers, one from academia and one from industry. Highly qualified personnel from both employers will jointly coach the PhD student.
Eindhoven University of Technology (TU/e)
Requirements
Applicants should have, or expect to receive, a Master of Science degree or equivalent in a relevant electrical engineering or applied physics discipline and should not have more than four years of research experience. In addition to the formal Research Fellow qualifications, selection is also based on the performance of the candidates in other works (e.g. thesis and advanced level courses), as well as through interviews and assignments. Besides good subject knowledge, emphasis will be on creative thinking, motivation, ability to cooperate, initiative to work independently and personal suitability for research training. Previous experience in the areas of wireless communications, statistical signal processing and antennas, as well as proficiency in using scientific and engineering software packages such as MATLAB are required.
For the PhD positions the EU 'Mobility rules' apply. For this vacancy this means that candidate students cannot have resided for more than 12 months during the period of 3 years immediately before the start of the PhD in the Netherlands.
Conditions of employment
- A meaningful job in a dynamic and ambitious university with the possibility to present your work at international conferences.
- A full-time employment for four years, with an intermediate evaluation (go/no-go) after nine months.
- To develop your teaching skills, you will spend 10% of your employment on teaching tasks.
- To support you during your PhD and to prepare you for the rest of your career, you will make a Training and Supervision plan and you will have free access to a personal development program for PhD students (PROOF program).
- A gross monthly salary and benefits (such as a pension scheme, pregnancy and maternity leave, partially paid parental leave) in accordance with the Collective Labor Agreement for Dutch Universities.
- Additionally, an annual holiday allowance of 8% of the yearly salary, plus a year-end allowance of 8.3% of the annual salary.
- Should you come from abroad and comply with certain conditions, you can make use of the so-called '30% facility', which permits you not to pay tax on 30% of your salary.
- A broad package of fringe benefits, including an excellent technical infrastructure, moving expenses, and savings schemes.
-
Family-friendly initiatives are in place, such as an international spouse program, and excellent on-campus children day care and sports facilities.