PhD on Atomic force microscopy 1: Modelling and Simulation of nanotube-based

PhD on Atomic force microscopy 1: Modelling and Simulation of nanotube-based

Published Deadline Location
25 Oct 22 Apr Eindhoven

You cannot apply for this job anymore (deadline was 22 Apr 2024).

Browse the current job offers or choose an item in the top navigation above.

Job description

Increasingly complex 3D shapes are used as Semicon devices, requiring advanced metrology techniques to monitor production and understand performance of the devices. Atomic force microscopy allows to reach the required sub-nm accuracy by using relatively blunt probes, sensing always in the same direction, but only the top of the 3D shapes can be explored.

This PhD project is part of a larger project in collaboration with TNO (Dutch Organization for Applied Scientific Research) and the semiconductor metrology company Nearfield Instruments, which aims to enable the use of nanotube-based probes to scan the profile on the samples with more challenging topographies. The nanotube probe shape strongly improves how well holes or trenches in the sample can be accessed. However, the slender probes become weaker in lateral direction, while sensitivity in this direction is also needed to thoroughly scan the samples. Within the project, this position focuses on the modelling and simulation of the nanotube-based profiling, whereas the other two work on the control and experimental part of the project.

Job Description

This PhD position aims to understand the nonlinear dynamics that drive the probe motion in the neighborhood of high-aspect ratio sample structures. In particular, van der Waals-type attractive forces, electrostatic forces and squeeze-film damping forces will bring a strongly nonlinear force-position dependency, which, in contrast to conventional approaches, cannot be understood by a spherical tip & flat surface approximation. Hence, to derive a proper dynamic model of the probe motion, different important steps need to be performed including
  • The development of  a 3D force model of the probe tip in the vicinity of the sample.
  • Based on the dynamical analysis derived from the force model, developing a two-dimensional sensing capacity where profile information can be obtained in longitudinal as well as in lateral direction of the nanotube probe.
  • Consideration of sideways bending and buckling of the narrow probe in the model.
  • Experimental validation of the 2D profile sensing.

Embedding

You will execute this project in the Autonomous and Complex Systems group of the Dynamics and Control (D&C) section at the Department of Mechanical Engineering of the Eindhoven University of Technology, and TNO Optomechatronics in Delft.

The mission of the Dynamics and Control Section, which consists of 22 faculty members and 45 researchers, is to perform research and train next-generation students on the topic of understanding and predicting the dynamics of complex engineering systems in order to develop advanced control, estimation, planning, and learning strategies which are at the core of the intelligent autonomous systems of the future: Designing and realizing smart autonomous systems for industry and society.

TNO Optomechatronics develops world-class optomechatronic systems for applications in space, big science, and the semiconductor industry. We push back the boundaries of technology, so as to give impetus to the high-tech industry and enable scientific discoveries.

Specifications

Eindhoven University of Technology (TU/e)

Requirements

  • You have experience with or a strong background in mechanical engineering, especially in the context of modelling and simulation. Preferably, you finished a Master's program in the areas of Mechanical Engineering, (Applied) Physics, (Applied) Mathematics, Mechatronics, Micro/Nanosystems, Systems and Control, Electrical Engineering or equivalent.
  • You have good communication skills and the attitude to participate successfully in the work of a research team.
  • You are motivated to develop your teaching skills and coach students.
  • You have good command of the English language (knowledge of Dutch is not required).

Conditions of employment

A meaningful job in a dynamic and ambitious university, in an interdisciplinary setting and within an international network. You will work on a beautiful, green campus within walking distance of the central train station. In addition, we offer you:
  • Full-time employment for four years, with an intermediate evaluation (go/no-go) after nine months. You will spend 10% of your employment on teaching tasks.
  • Salary and benefits (such as a pension scheme, paid pregnancy and maternity leave, partially paid parental leave) in accordance with the Collective Labour Agreement for Dutch Universities, scale P (min. €2,770 max. €3,539).
  • A year-end bonus of 8.3% and annual vacation pay of 8%.
  • High-quality training programs and other support to grow into a self-aware, autonomous scientific researcher. At TU/e we challenge you to take charge of your own learning process.
  • An excellent technical infrastructure, on-campus children's day care and sports facilities.
  • An allowance for commuting, working from home and internet costs.
  • A Staff Immigration Team and a tax compensation scheme (the 30% facility) for international candidates.

Specifications

  • PhD
  • Engineering
  • max. 38 hours per week
  • University graduate
  • V35.7029

Employer

Eindhoven University of Technology (TU/e)

Learn more about this employer

Location

De Rondom 70, 5612 AP, Eindhoven

View on Google Maps

Interessant voor jou