Postdoc: Cavity-enhanced charge transport and light-induced superconductivity

Postdoc: Cavity-enhanced charge transport and light-induced superconductivity

Published Deadline Location
8 Jun 10 Aug Amsterdam

You cannot apply for this job anymore (deadline was 10 Aug 2020).

Browse the current job offers or choose an item in the top navigation above.

Job description

In this project you will explore how an optical cavity can enhance the electrical conductivity of materials. This project draws inspiration from two recent developments at the cross-roads of condensed matter physics and quantum optics. One of these developments is the report that the electrical conductivity of materials can be enhanced simply by placing them inside an optical cavity, even in the darkness. The enhanced conductivity has been attributed to the vacuum field in the cavity. The other development is the prediction that hybrid light-matter quasi-particles, known as polaritons, can enable electrons to pair and transition to a superconducting state. Since the critical temperature depends on the polariton density, this type of light-induced superconductivity can potentially be realized at much higher temperatures than in standard systems.

This project is part of the ERC Starting grant “Strongly CORrelated Polaritons In Optoelectronic Nanostructures”(SCORPION), which comes with substantial funds for equipment. Therefore, you will have plenty of resources to achieve your goals.

Your tasks will include: i) depositing and electrically contacting various materials on mirrors that will be used to make micro-cavities, and ii) performing various optical and electrical measurements while you controllably mix optical and electronic degrees of freedom. You will perform these experiments at various temperatures (4-290 K) using a tunable cavity in a closed-cycle cryostat. This unique setup enables independent translations and rotations of two mirrors with sub-nanometer precision, free-space and fiber-coupled optical excitation and collection, as well as conductivity measurements, all inside a closed-cycle cryostat. The setup also includes state-of-the-art lasers and detectors.

You will be involved in all aspects of the design, realization, and analysis of experiments. You are expected to collaborate with a PhD student working on complementary aspects of strong light-matter coupling, and to co-supervise Masters students. You will also have the opportunity to collaborate with world-leading theory groups working on related topics.

Specifications

AMOLF

Requirements

You have (or will get soon) a PhD in Physics or closely-related discipline. The ideal candidate has experience with optical and electrical transport measurements. Candidates with a background only in optics, or in superconductivity, will be considered if they are driven and capable of quickly learning new experimental and theoretical skills. This project involves diverse collaborations across materials science, device physics, and quantum optics. Therefore, we are looking for a team-player with multidisciplinary interests and abilities.

Conditions of employment

The position is intended as full-time (40 hours / week, 12 months / year) appointment in the service of the Netherlands Foundation of Scientific Research Institutes (NWO-I) for the duration of two years. AMOLF assists any new foreign postdoc with housing and visa applications and compensates their transport costs and furnishing expenses.

Department

Interacting Photons

In the Interacting Photons  group we are interested in nonlinear and quantum behaviour of light and matter. We mainly work with tunable cavities where light and matter can strongly interact in a controllable way. You will have extensive support from the group leader and the technical staff (software, mechanical, electrical) at AMOLF. You will have access to state-of-the-art cleanroom for nanofabrication and characterization.

Specifications

  • Postdoc
  • max. 40 hours per week
  • 1104294

Location

Science Park 104, 1098 XG, Amsterdam

View on Google Maps

Interessant voor jou